

GUT IM FUTTER? WAS BRAUCHT DIE HEFE – NÄHRSTOFFPRÄPARATE IN FORSCHUNG UND PRAXIS

Dr. Friederike Rex und

Dr. Pascal Wegmann-Herr

Web Seminar "Keller digital" 5. August 2021

STICKSTOFFVERBINDUNGEN IM MOST

Ammonium (NH₄⁺) und freie Aminosäuren wie Arginin, Glutamin, und Alanin

NOPA (Alpha- Aminosäuren) optimal: 120 – 150 mg/L YAN: Ammonium + Alpha- Aminosäuren - ohne Prolin und Hyxdroxyprolin (wird nicht aufgenommen)

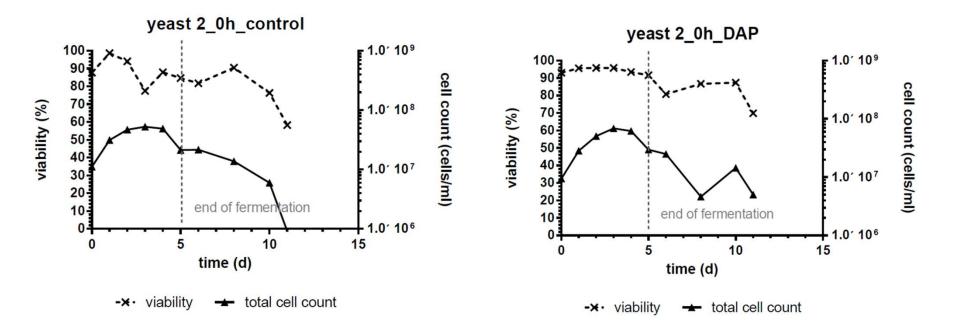
Botrytis und andere Fäulnispilze verringern den Stickstoffgehalt

Arginin Quelle: Wikipedia

WELCHE PRODUKTE GIBT ES...

Insitute for viticulture and enology

Hefenährstoff	Gesetzliche Vorgaben Aus Schandelmeier: Weinrecht in Schule und Praxis 2021	Inhaltsstoffe
DAP	Grenzwert 100 g/hL Zweite Gärung 30 g/hL	Ammoniumsalz der Phosphorsäure 21% Stickstoff
Ammoniumbisulfit	20 g/hL	(Fragwürdig weil SO ₂) 64% SO ₂ und 18 %NH ₄
Thiamin (Vitamin B12)	60 mg/hL	
Heferindenprodukte	40 g/hL	Aminosäuren, Vitamine, langkettige Fettsäuren und Sterole 5% Stickstoff
Inaktivierte gluthationreiche Hefen	20 mg/L	

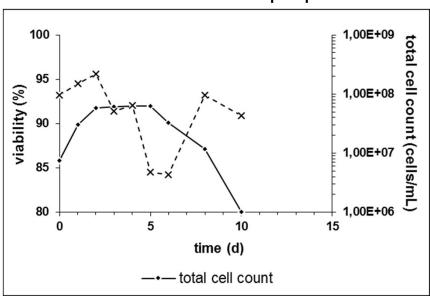

Mischprodukte

Friederike Rex, DLR Rheinpfalz

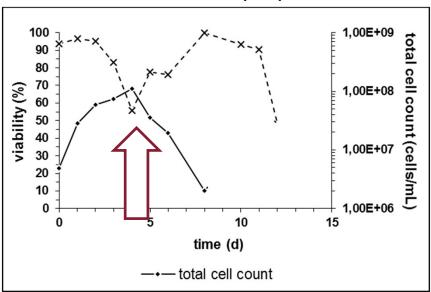
PRAXISVERSUCHE

Insitute for viticulture and

Bestimmung der Viabilität und der Lebenzellzahl mittels Smartphone Mikroskop Oculyze


Keine gravierenden Unterschiede durch Nährstoffeinsatz, aber Stabilisierung der Viabilitität

Abbildungen: Dr. Kathrin Diesler


PRAXISVERSUCHE

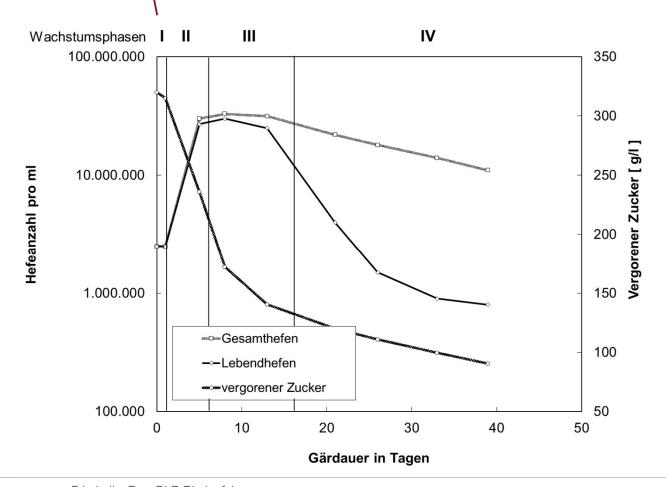
Hefe 2 mit Heferindenpräparat

Hefe 2 mit Heferindenpräparat + DAP

Bestimmung der Viabilität und der Lebenzellzahl mittels Smartphone Mikroskop Oculyze

Nährstoffeinsatz stabilisiert, aber mehr hilft nicht mehr

Abbildungen: Dr. Kathrin Diesler



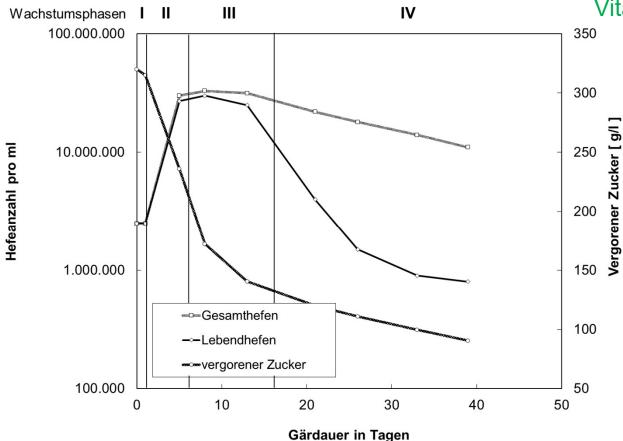
WAS BRAUCHT DIE HEFE WANN?

Insitute for viticulture and enology

Thiamin Ammonium Aufnahme Aminosäuren gehemmt

Quelle: Fischer, U.

Insitute for viticulture and enology


WAS BRAUCHT DIE HEFE WANN?

Wachstumsphase Länge der Wachstumsphase ist abhängig von der N-Verfügbarkeit Aufnahme AS in bestimmter Reihenfolge

+ Sauerstoff

Magnesium Vitamine

Ausreichend vorhanden

Quelle: Fischer, U.

Hefeernährung und reduzierte Bildung von Böcksern während der Weißweingärung

Pascal Wegmann-Herr, Sebastian Ullrich, Johanna Kost, Parissa Paydar, Dominik Durner

Auswirkung der Trockenheit auf den Aminosäuregehalt

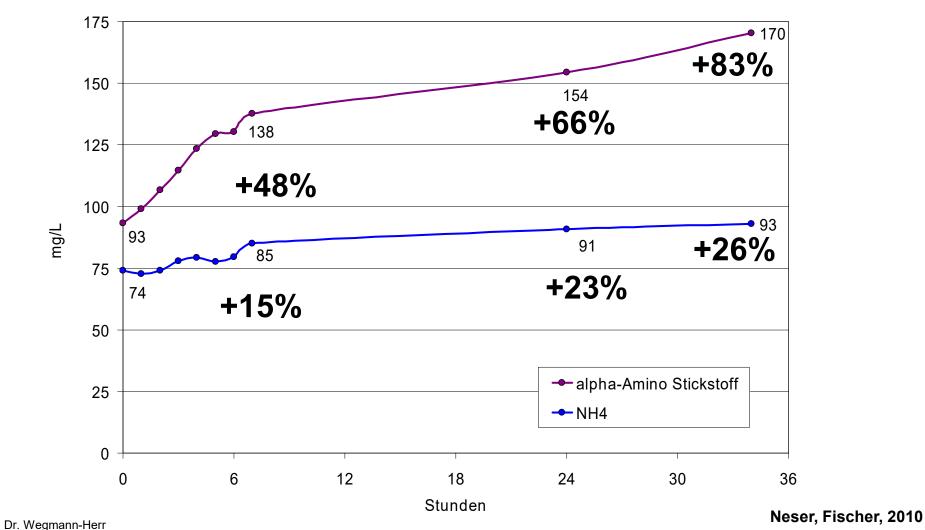
Institut für Weinbau und Oenologie

Yeast Assimilable Nitrogen Content (YANC) in Table Wine and Icewine

		2007 (Drought)		2008	(Rainy)
Variety	Ammonia (mgN/L)	Primary Amino Nitrogen (mgN/L)	Total YANC (mgN/L)	Ammonia (mgN/L)	Primary Amino Nitrogen (mgN/L)	Total YANC (mgN/L)
Table Wine						
Pinot Grigio	14	32	46	66	168	234
Pinot Grigio	61	92	153	95	233	328
Chardonnay	23	18	41	63	158	221
Chardonnay	48	47	95	86	263	349
Chardonnay	24	31	55	66	259	325
Riesling	46	44	90	77	128	205
Riesling	49	74	123	70	153	223
Viognier	15	81	96	102	247	349
Pinot Noir	35	74	109	105	208	313
Pinot Noir	14	178	192	127	295	422
Pinot Noir	32	56	88	90	209	299
Merlot	16	26	42	69	152	221
Merlot	37	48	85	86	178	264
Cabernet Franc	16	278	294	27	79	106
Cabernet Franc	1	45	46	29	92	121
Cabernet Franc	20	83	103	24	57	81
Cabernet Sauvignon	32	34	66	21	62	83
Cabernet Sauvignon	37	28	65	19	51	70
Shiraz	55	104	159	27	321	348
Shiraz	71	195	266	48	355	403
lcewine		2004*			2008	
Vidal	47.6	443.3	490.9	64	453	517
Riesling	84.2	375.8	460.0	107	288	395

^{*2004} Icewine data was obtained from the lab of Dr. D. Inglis (Director, CCOVI) and are averages of 212 Vidal Icewine juice samples and 20 Riesling juice samples

Dr. Wegmann-Herr

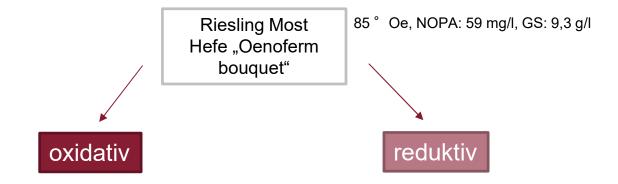

All table wine data was obtained from single vineyard sites which are constant across the vintages

Veränderung Stickstoff während der Maischestandzeit eines Riesling

Institut für Weinbau und Oenologie

2010 Riesling, 95°Oe, 12 g/L Säure - 13./14.10.2010

Versuchsaufbau I

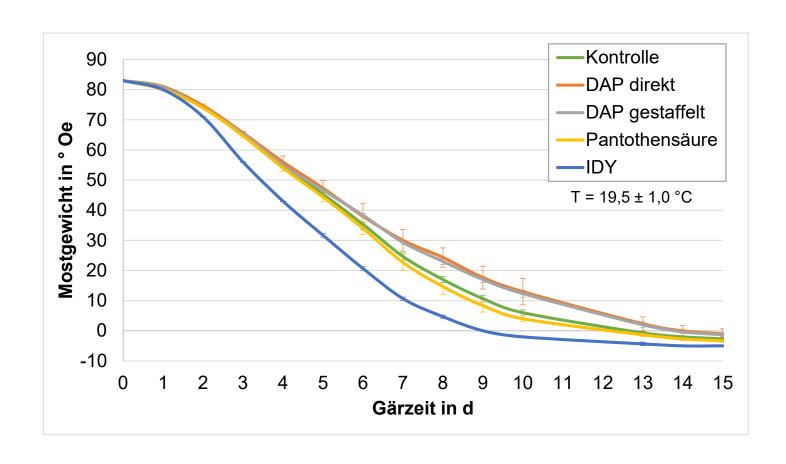


Institut für Weinbau und Oenologie

	Sterilmost Riesling Hefe "Oenoferm Riesling"	83° Oe, NOPA: 78 mg/l, GS: 7.5 g/l
	Kontrolle (n=3)	
	DAHP 1 Tag AG (1g/L), (n=3)	
	IDY (Summe 0.6 g/L), (n=3)	

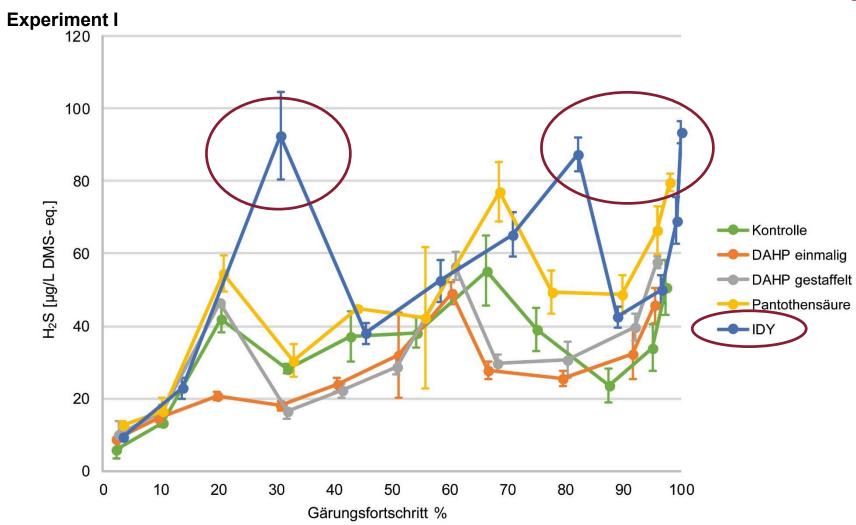
Versuchsaufbau II

Kontrolle, (n=3)


Diammoniumphosphat gestaffelt an Tag 1-3 (insgesamt 1g/L), (n=3)

Inaktive Hefezellwandpräparate: Goferm (30 g/100 L), Optimum White (20 g/100 L), (n=3)

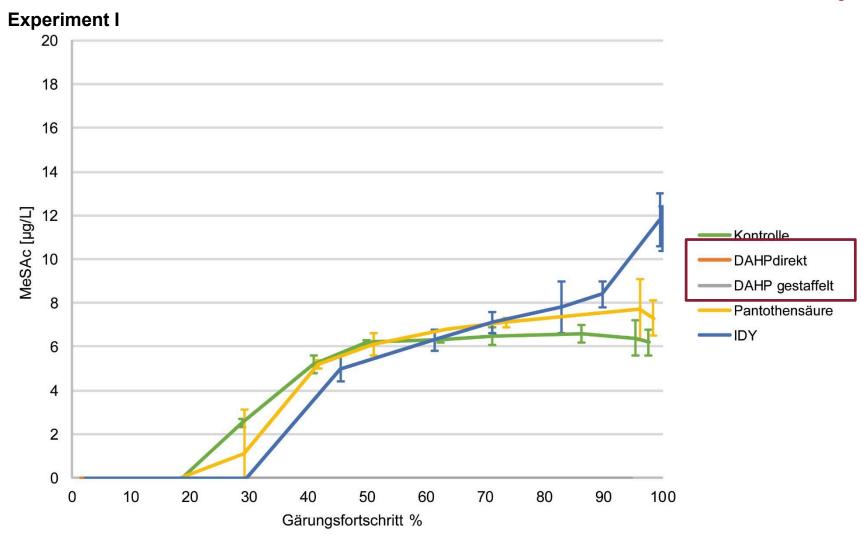
Gärverlauf


Institut für Weinbau und Oenologie

Rheinland Dfalz DIENSTLEISTUNGSZENTRUM LÄNDLICHER RAUM RHEINPFALZ

H₂S Bildung

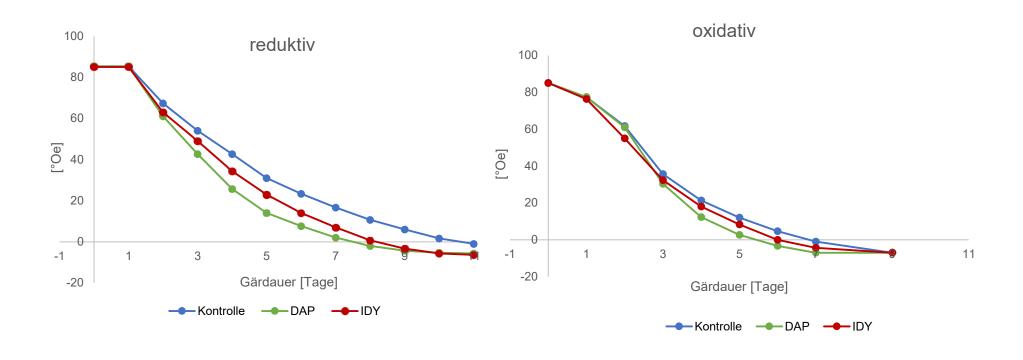
Institut für Weinbau und Oenologie



Dr. Wegmann-Herr

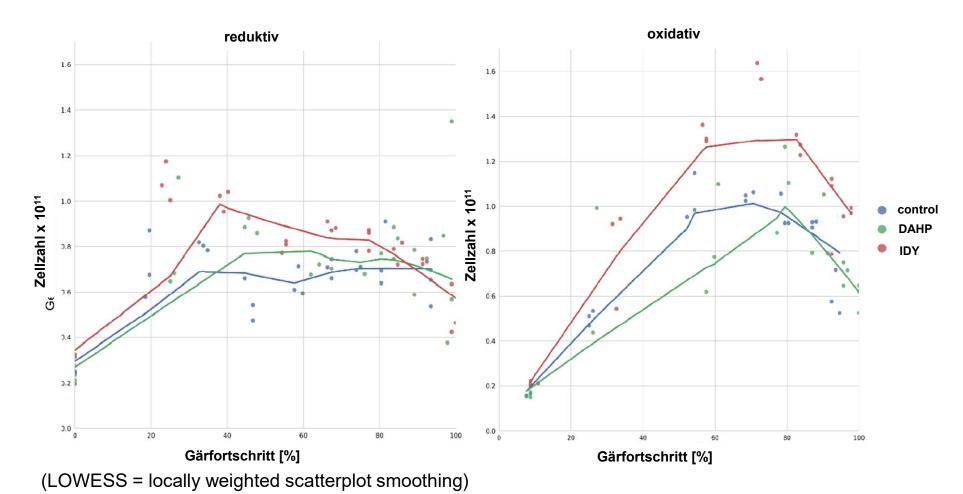
Bildung von S-Methyl thioacetat

Institut für Weinbau und Oenologie


Dr. Wegmann-Herr

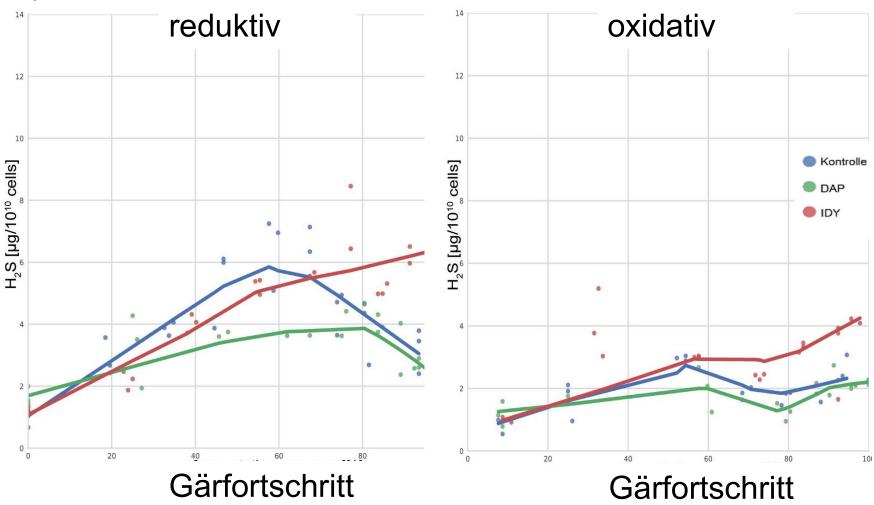
Gärverlauf

Institut für Weinbau und Oenologie


Experiment II

Hefezellzahl – reduktive vs. oxidative Mostbehandlung

Experiment II


Dr. Wegmann-Herr

H₂S [μg pro 10¹⁰ Zellen]

Institut für Weinbau und Oenologie

Dr. Wegmann-Herr

S-off-flavors abhängig von der N-Zugabe (bei 95 % Gärfortschritt)

und Oenologie

Experiment II

Zusammenfassung

- Hefezellzahl
 - → Singinifikant erhöht bei Sauerstoffzufuhr im Most
 - → Deutlich höher bei IDY Zugabe (schnellerer Gärverlauf)
- Moste mit geringem YAN zeigen :
 - → Signifikant erhöhte S-off-flavor Bildung; unabhängig der Zellkonzentration
- Zugabe von DAHP:
 - → scheinbar ausreichender N-Speicher
 - → Geringe Gehalte von S-off-flavors
- → Keine Bildung von S-methyl thioacetat oder S-ethyl thioacetat (Gefahr der Lagerböckser ist gering)

Danke für ihre Teilnahme

und Oenologie

DLR Rheinpfalz

Institut für Weinbau & Oenologie

Ulrich Fischer **Dominik Durner** Pascal Wegmann-Herr Hans-Georg Schmarr Sebastian Ullrich Daniel Zimmermann Sylvia Neef Johanna Kost

... ein Projekt der Industriellen Gemeinschaftsforschung (IGF)

gefördert durch/via

Andreas Schieber **Fabian Weber** Franziska Bührle Sabrina Zimdars

Das o. q. IGF-Vorhaben der Forschungsvereinigung Forschungskreis der Ernährungsindustrie e. V. (FEI), Godesberger Allee 142-148, 53175 Bonn, wird/wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Project AiF 18645 N Dr. Wegmann-Herr

Universität Bonn Institut für Ernährungs- und Lebensmittelwissenschaften